C onvergent, enantioselective synthesis of the novel furanoditerpene (+)-taonianone through facially selective chiral olefin-ketene [2+2] cycloaddition

A lice Kanazawa, Philippe D elair, M ehrnaz Pourashraf and A ndrew E. G reene*

U niversité J oseph Fourier, LEDSS, BP 53X, 38041 Grenoble C edex, F rance

Abstract

(+)-Taonianone, an unusual diterpene from the brown alga Taonia australasica, has been enantioselectively prepared through [2+2] cycloaddition of chloromethylketene with a chiral enol ether.

It has previously been shown that diastereofacially selective cycloaddition of dichloroketene with chiral olefins can be effectively used to prepare γ-lactam-derived, γ-lactone and cyclopentanone natural products. ${ }^{1} \mathrm{~A}$ salient feature of this methodology is that α, β unsaturation can be introduced through reductive elimination under conditions mild enough to preclude epimerization at sensitive chiral centers, ${ }^{2}$ and thus the approach seemed particularly well suited for a synthesis of (+)taonianone 1.

(+)-Taonianone, a furanoditerpene metabolite of the brown seaweed Taonia australasica, was isolated and structurally elucidated by M urphy et al. in 1981 and found to represent a new class of monocarbocyclic diterpenes. ${ }^{3}$ Twice synthesized in natural form from (R)-(-)-carvone, it has thus been shown to possess the absolute stereochemistry that is indicated in structure $1 .{ }^{4}$ In this communication, an efficient asymmetric synthesis of this natural product is described, based on what we believe to be the first example of chirality control through facial selectivity in an alkylchloroketene-chiral enol ether [2+2] cycloaddition.

Our initial convergent approach to (+)-taonianone began with the conversion of readily available ${ }^{5}$ (S)-(-)-1-($2,4,6$ triisopropylphenyl)ethanol $\mathbf{2}$ into its (Z)-isopent-1-enyl ether $\mathbf{3}$ (67% yield) (Scheme 1). Cycloaddition of this chiral olefin with dichloroketene ${ }^{6}$ proceeded with excellent facial selectivity ($95: 5$) to give dichlorocyclobutanone 4a, which in the presence of diazomethane underwent smooth, regioselective ring enlargement ${ }^{7}$ to provide the corresponding dichlorocyclopentanone. This derivative on exposure to chromous perchlorate ${ }^{2}$ in aqueous acetone produced highly enantioenriched α-chlorocyclopentenone 5a (53% overall or 81% per step from 3).

Of the several side chain preparations examined, that shown in Scheme 2 was found to be the most practical and reproducible. The homoallylic bromide 8b so obtained was converted into the G rignard reagent $8 \mathbf{8}$, which under cuprous iodide catalysis added conjugately to enone 5 a [eqn. (1)]. The resulting α-chloroenolate on treatment with methyl iodide in HM PA

Scheme 1 Reagents and conditions: i, isopentenyl methyl ether, NBS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; then $\mathrm{Zn}-\mathrm{Cu}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{MeOH}$; then separation of E and Z isomers, equilibration of the E isomer $\left[\mathrm{Hg}(\mathrm{OAC})_{2}\right], 67 \% ; \mathrm{ii}, \mathrm{Cl}_{3} \mathrm{CCOCl}$ (series a) or $\mathrm{MeCl}_{2} \mathrm{CCOCl}$ (series b), $\mathrm{Zn}-\mathrm{Cu}$, diethyl ether; iii, $\mathrm{CH}_{2} \mathrm{~N}_{2}$, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{MeOH}$; iv, $\mathrm{Cr}\left(\mathrm{ClO}_{4}\right)_{2}$, acetone; then MeCOCl , proton sponge, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 53 \%$ (series a), 43% (series b) (3 steps)

Scheme 2 Reagents and conditions: $\mathrm{i}, \mathrm{Me} \mathrm{e}_{2} \mathrm{ThSiCl}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 92%; ii, triethyl phosponoacetate, LDA, THF 55\%; iii, DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv, M sCl, LiCl, 2,4,6-trimethylpyridine, DM F, 82\% (2 steps); v, 3-(chloromethyl)furan, Mg , THF ; then $7 \mathrm{c}, \mathrm{Li}_{2} \mathrm{CuCl}_{4}, \mathrm{THF}$; vi, HF, $\mathrm{CH}_{3} \mathrm{CN}, 69 \%$ (2 steps); vii, $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{Et}_{2} \mathrm{O}, 93 \%$, viii, Mg g, THF [Th = thexyl (1,1,2-trimethylpropyl)]
underwent methylation to give cyclopentanone 9, which in situ slowly lost HCl^{8} to provide directly (+)-taonianone, but unfortunately in very low overall yield. Since the yield, in part, was compromised by the occurrence of a substantial amount of exocyclic elimination, a consequence of poor stereoselectivity in the enolate methylation, an alternative approach designed to obviate the need for stereocontrol was examined.
Chloromethylketene ${ }^{6}$ also was found to react with enol ether 3 with a high degree of facial selectivity (94:6) to produce the expected cyclobutanone $\mathbf{4 b}$ as the major product (3:1 epimeric mixture at C-2) (Scheme 1). \dagger Diazomethane-promoted ring expansion of $\mathbf{4 b}$ proceeded cleanly, albeit moreslowly than with
\dagger D iastereomeric upgrading of this 94:6 mixture through recrystallization led to unacceptable loss of material.

(1)

4a, to give the corresponding cyclopentanone, which on reductive elimination provided the α-methylcyclopentenone $\mathbf{5 b}$ in 43% overall yield (75% per step).

Copper-catalyzed conjugate addition of the side chain Grignard reagent [eqn. (2)] followed by trapping of the resultant

enolate with trimethylsilyl chloride gave the desired enol ether 10, which was found to undergo dehydrosilylation best with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in the presence of $2,4,6$-trimethylpyridine (s-collidine) ${ }^{9}$ in dichloromethane at $20^{\circ} \mathrm{C}$ to provide 1 in 31% yield (56% per step). Synthetically derived (+)-taonianone \ddagger furnished spectroscopic data (IR mass, ${ }^{1} \mathrm{H} N \mathrm{MR},{ }^{13} \mathrm{C} N \mathrm{M}$) in perfect accord with the literature values for the natural product.

M ethods for creating carbon-carbon bonds with facial selectivity are of paramount importance in synthetic chemistry. This first asymmetric synthesis of (+)-taonianone [seven steps from (S)-(-)-1-(2,4,6-triisopropylphenyl)ethanol, 9\% overall yield] demonstrates the potential of alkylchloroketene-chiral eno ether [$2+2$] cycloaddition for this purpose.

Experimental

J Values are given in Hz . [a] $]_{\mathrm{D}}$ Values are given in units of 10^{-1} $\operatorname{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$.
\ddagger The synthetic material displayed the expected $94: 6$ enantiomeric ratio (HPLC, Chiracel OD-H, $5 \mu \mathrm{~m}$, hexane-propan-2-ol, $98: 2,0.5 \mathrm{~cm}^{3}$ $\min ^{-1}$).

Taonianone 1

To a suspension of Cul ($10 \mathrm{mg}, 0.05 \mathrm{mmol}$) in dry THF (0.6 cm^{3}) at $-50^{\circ} \mathrm{C}$ was added $1 \mathrm{~cm}^{3}$ of G rignard reagent 8 c (from 240 mg of bromide $\mathbf{8 b}, \S 70 \mathrm{mg}$ of Mg and $1.2 \mathrm{~cm}^{3}$ of THF). The resulting mixture was warmed to $-25^{\circ} \mathrm{C}$ and then recooled to $-90^{\circ} \mathrm{C}$ and treated dropwise with a solution of enone $\mathbf{5 b}$ १ (30 $\mathrm{mg}, 0.22 \mathrm{mmol}$) in THF ($0.5 \mathrm{~cm}^{3}$). A fter being warmed to $-55^{\circ} \mathrm{C}$ and recooled to $-78^{\circ} \mathrm{C}$, the mixture was treated with $0.54 \mathrm{~cm}^{3}$ of a $1: 1: 1$ mixture of TM SCI, hexane and triethylamine The resulting reaction mixture was allowed to warm over 1 h to $20^{\circ} \mathrm{C}$ and was poured into diethyl ether and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the crude enol ether 10 was then isolated in the usual fashion.
A solution of the crude enol ether in dry dichloromethane ($1 \mathrm{~cm}^{3}$) containing 2,4,6-trimethylpyridine ($92 \mathrm{mg}, 0.76 \mathrm{mmol}$) was cooled to $-10^{\circ} \mathrm{C}$ and treated with a solution of DD Q (100 $\mathrm{mg}, 0.44 \mathrm{mmol}$) in $4 \mathrm{~cm}^{3}$ of dry dichloromethane. A fter being allowed to warm over 20 min to $20^{\circ} \mathrm{C}$, the dark red solution was processed with diethyl ether in the usual way to afford the crude enone, which was purified on silica gel with 10% ethyl acetate in hexane as the eluent to provide taonianone $\mathbf{1}(20 \mathrm{mg}$, 31%); $[a]_{0}^{20}+10.3$ (c $0.9, \mathrm{CHCl}_{3}$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2958,2927$, 2870, 1698 and 1641; $\delta_{\mathrm{H}} 0.55$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9$), 0.97 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9$), $1.61(3 \mathrm{H}, \mathrm{s}), 1.66(3 \mathrm{H}, \mathrm{s}), 1.9-2.6(11 \mathrm{H}, \mathrm{m}), 2.79(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $5.17(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.3), 6.22(1 \mathrm{H}, \mathrm{br}$ s), $7.17(1 \mathrm{H}, \mathrm{br}$ s) and 7.31 (1 H , br s); $\delta_{c} 8.0,14.8,15.9,21.8,24.8,27.4,27.6,28.3,34.7,36.9$, $45.8,110.9,124.7,124.8,134.5,137.1,138.8,142.6,175.5$ and 209.5 (Found: $\mathrm{M}^{+}, 300.2097 . \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{M}, 300.2089$).

Acknowledgements

We thank Professor J. Lhomme for his interest in our work. Financial support from the CNRS (UMR 5616) and the U niversité Joseph Fourier are gratefully acknowledged.
§ Bromide 8b: $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2969,2925,2856,1670,1565,1503,1449$, 1164, 1029 and 876; $\delta_{\mathrm{H}} 1.59(3 \mathrm{H}, \mathrm{s}), 2.23(2 \mathrm{H}, \mathrm{m}), 2.48(4 \mathrm{H}, \mathrm{m}), 3.41$ ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4$), $5.25(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J} 6.9), 6.26(1 \mathrm{H}, \mathrm{s}), 7.20(1 \mathrm{H}, \mathrm{m})$ and 7.32 (1 H , m); $\delta_{\mathrm{c}} 15.6,24.7,28.4,31.6,42.8,111.0,124.7,127.1,132.6$, 138.9 and $142.6 ; \mathrm{m} / \mathrm{z}: 244$ and $242\left(\mathrm{M}^{+}\right), 163,135,81,53$ and 41 (Found: C, 54.46; H, 6.55\%; $\mathrm{M}^{+}, 242.0308$. Calc. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{OBr}$: C, 54.34; H , 6.25\%; M , 242.0306).

II Enone 5b: $[\alpha]_{\mathrm{D}}^{20}-119$ (c 3.0, $\mathrm{CH} \mathrm{Cl}_{3}$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 2960, 2911, 2880, 1707, 1644, 1454, 1339 and 1072; $\delta_{\mathrm{H}} 0.86$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7$), 0.90 ($3 \mathrm{H}, \mathrm{d}$, J 6.7), $1.66(1 \mathrm{H}, \mathrm{m}), 1.72(3 \mathrm{H}, \mathrm{m}), 2.04(1 \mathrm{H}, \mathrm{A}$ of $\mathrm{ABX}, \mathrm{J} 2.1,18.9)$, 2.40 ($1 \mathrm{H}, \mathrm{B}$ of $A B X, \mathrm{~J} 6.3,18.7$), $2.6(1 \mathrm{H}, \mathrm{m})$ and $7.24(1 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{c}} 10.0,19.8,19.9,31.7,38.7,45.4,141.8,160.8$ and 209.8 (Found: M ${ }^{+}$, 138.1049. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}$ requires $\mathrm{M}, 138.1045$).

R eferences

1 A. E. Greene, F. Charbonnier, M. J. Luche and A. M oyano, J. A m. C hem. Soc., 1987, 109, 4752; M. B. M . de A zevedo, M . M . M urta and A . E. Greene, J. Org. C hem., 1992, 57, 4567; M . M . M urta, M . B. M . de Azevedo and A. E. Greene, ibid., 1993, 58, 7537; M. B. M. de A zevedo and A. E. Greene, ibid., 1995, 60, 4940; P. Nebois and A . E. G reene, ibid., 1996, 61, 5210.
2 A. E. G reene and F. Charbonnier, Tetrahedron L ett., 1985, 26, 5525.
3 P. T. M urphy, G. M arch and R. J. Wells, Tetrahedron Lett., 1981, 22, 1555.
4 F. K ido, T. A be and A. Yoshikoshi, J. Chem. Soc., C hem. Commun., 1986, 590; M. H uckestein, W. K reiser and V. R üschenbaum, H elv. Chim. Acta, 1987, 70, 445
5 P. Delair, A. M. K anazawa and M. B. M . de A zevedo, Tetrahedron: A symmetry, 1996, 7, 2707.
6 For a review on ketene cycloaddition chemistry, see: J. A. H yatt and P. W. R aynolds, Org. React., 1994, 45, 159.

7 A . E. G reene and J. P. D eprés, J. A m. C hem. Soc., 1979, 101, 4003.
8 J. P. D eprés and A. E. G reene, J. Org. C hem., 1980, 45, 2036.
9 T. L. Fevig, R . L. Elliott and D. P. Cunan, J. Am. Chem. Soc., 1988, 110, 5064.

